On Nonuniqueness in Rational L_p -Approximation

DIETRICH BRAESS

Institut für Mathematik, Ruhr-Universität, D-4630 Bochum 1, West Germany

Communicated by T. J. Rivlin

Received April 8, 1985

The method described by I. Diener [3] is applied to rational functions rather than to families with one nonlinear parameter. Given an (m+2)-dimensional subspace of L_p , a function with two or more nearest points in R_n^m is obtained by the Borsuk antipodality theorem, if n > 0 and some exceptional cases are excluded. Moreover, a symmetry argument leads to functions with at least four global solutions. -C 1987 Academic Press, Inc.

In the preceding paper, Diener obtained a nonuniqueness result (Theorem 3.3) by using the following topological argument. Assume that for each f in some subset E_1 of $L_2(X)$ there is a unique nearest point in some approximatively compact set $M \subset L_2(X)$. Then the metric projection $P: E_1 \rightarrow M$ is continuous, and a fixed point theorem yields a degenerate best approximation for some $f \in E_1$. Since this can be ruled out, a contradiction to the uniqueness hypothesis is obtained.

In this note, we will establish a general nonuniqueness result for rational approximation by using the Borsuk antipodality theorem. As in [3], R_n^m denotes the family of rational functions whose numerators and denominators are polynomials of degree $\leq m$ and $\leq n$, respectively.

THEOREM 1. Let $1 < r < \infty$, $m \ge 0$, $n \ge 1$, and $[\alpha, \beta]$ be a nondegenerate real interval. Each (m + 2)-dimensional subspace E_1 of $L_r[\alpha, \beta]$ such that $E_1 \cap R_n^m = \{0\}$, contains a function with at least two best approximations from R_n^m .

Our proof of the theorem will make use of the

BORSUK ANTIPODALITY THEOREM. Let Ω be a bounded, open, symmetric neighborhood of 0 in \mathbb{R}^{N+1} , and $T: \partial \Omega \to \mathbb{R}^N$ be an odd, continuous mapping. Then there exists $x^* \in \partial \Omega$ for which $T(x^*) = 0$.

A mapping T is said to be odd if T(-x) = -T(x).

Proof of Theorem 1. The set $S^{m+1} := \{f \in E_1 : \|f\| = 1\}$ is homeomorphic to an (m+1)-dimensional sphere. Suppose that to each $f \in E_1$ there is a unique L_r -nearest point in R_n^m . It is well known [1, 2] that a best approximation is not contained in R_{n-1}^{m-1} and that R_n^m is approximatively compact. By standard arguments [3], the metric projection $P: S^{m+1} \to R_n^m$ is continuous. Let the denominators be normalized by $\max_{x \in [\alpha,\beta]} \{q(x)\} = 1$. Then the mapping $\phi: R_n^m \setminus R_n^{m-1} \to \mathbb{R}^{m+1}$ which sends u = p/q with $p = \sum_{k=0}^m a_k x^k$ to the vector of coefficients $(a_0, a_1, ..., a_m)$, is continuous. Obviously, P(-f) = -P(f). Therefore, $\phi \circ P$ is an odd mapping. By the Borsuk antipodality theorem, there exists an $f_0 \in S_{n-1}^{m+1}$, and we have a contradiction. Thus, P cannot be continuous and not each $f \in E_1$ has a unique nearest point in R_n^m .

Since the nonlinear set R_n^m contains (m + 1)-dimensional linear subsets and the best L_r -approximation in linear subsets is unique, it is natural that one gains nonuniqueness only modulo (m + 1)-dimensional spaces. It would be interesting to have some knowledge about the structure of the set with those elements in (m + 3)-dimensional subspaces, which have more than one nearest point.

THEOREM 2. Let $1 < r < \infty$ and $m \ge 0$. Let E_1 be an (m+2)-dimensional subspace of $L_r[-1, +1]$ such that $E_1 \cap R_1^m = \{0\}$ and

$$f(-x) = (-1)^{m+1} f(x)$$
 for each $f \in E_1$.

Then E_1 contains a function with at least four best approximations from R_1^m .

Proof. Let

$$M = \{ u = p/q \in R_1^m : q(x) = b_0 + b_1 x, b_1 \ge 0 \}.$$

It follows from the well-known symmetry argument that each best approximation to $f \in E_1$ from M is also a best approximation from R_1^m . Moreover, no best approximation is degenerate. Hence, M is approximatively compact.

The same arguments as in the preceding proof imply that there exists an $f \in E_1$ with two best approximations u_1 and u_2 from M. By setting $u_3(x) = (-1)^{m+1}u_1(-x)$ and $u_4(x) = (-1)^{m+1}u_2(-x)$ we obtain two more best approximations from R_1^m .

Similarly, odd functions with four best approximations from R_2^0 may be constructed.

Note added in proof. With the same arguments as in Theorem 1 we conclude that each (m+2)-dimensional subspace of $C[\alpha, \beta]$ contains an element for which the best uniform approximation from R_n^m is degenerate.

DIETRICH BRAESS

References

- 1. J. BLATTER, Approximative Kompaktheit verallgemeinerter rationaler Funktionen, J. Approx. Theory 1 (1968), 85-93.
- 2. E. W. CHENEY AND A. A. GOLDSTEIN, Mean-square approximation by generalized rational functions, *Math. Z.* 95 (1967), 232–241.
- 3. I. DIENER, On nonuniqueness in nonlinear L₂-approximation, J. Approx. Theory **51** (1987), 54-67.